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Abstract
A wide class of Hamiltonian systems with N degrees of freedom and endowed
with, at least, (N−2) functionally independent integrals of motion in involution
is constructed by making use of the two-photon Lie–Poisson coalgebra (h6,�).
The set of (N − 2) constants of the motion is shown to be a universal one for
all these Hamiltonians, irrespective of the dependence of the latter on several
arbitrary functions and N free parameters. Within this large class of quasi-
integrable N-dimensional Hamiltonians, new families of completely integrable
systems are identified by finding explicitly a new independent integral I through
the analysis of the sub-coalgebra structure of h6. In particular, new completely
integrable N-dimensional Hamiltonians describing natural systems, geodesic
flows and static electromagnetic Hamiltonians are presented.

PACS numbers: 02.20.Sv, 02.30.Ik, 45.20.Jj

1. Introduction

Due to its physical and mathematical relevance, the construction of completely integrable
Hamiltonian systems focuses on intense research activity that makes use of many different
approaches and techniques (see, for instance, [1–4]). However, the number of known integrable
systems (in the Liouville sense [5]) that can be generalized for an arbitrary number N of
degrees of freedom is relatively scarce. In most of the known cases, such an N-dimensional
(ND) integrability is based on some underlying symmetry that allows for the appropriate
propagation of the integrability properties to arbitrary dimension (see the systems described
in [6–22] and references therein).

The aim of this paper is the construction of new families of classical integrable Hamiltonian
systems with N degrees of freedom, depending on several arbitrary functions and N free
parameters, and whose integrals of the motion will be also explicitly given. These results will
be obtained by applying the coalgebra symmetry method [23–27] to the Poisson version of the
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so-called two-photon/Schrödinger algebra h6 [28–30]. As we shall show in the following, the
h6-coalgebra symmetry turns out to be extremely powerful, since the N-particle framework
provided by the coalgebra structure encompasses different N-body symmetries that underlie
several useful and explicit integrability properties. Moreover, one can easily realize that the
approach presented here is also applicable in order to ensure the integrability of the quantum
mechanical analogues of all the Hamiltonians contained in this paper.

Let us recall that the h6 Lie–Poisson algebra is spanned by the six abstract generators
{K,A+, A−, B+, B−,M}, whose one-particle symplectic realization is given by

A+ = λ1p1 A− = λ1q1 K = q1p1 − λ2
1

2
B+ = p2

1 B− = q2
1 M = λ2

1,

(1.1)

where λ1 is a non-vanishing constant that labels the previous symplectic realization and where
we have considered the usual Poisson bracket {q1, p1} = 1. The abstract Poisson brackets
defining h6 read as

{K,A+} = A+ {K,A−} = −A− {A−, A+} = M

{K,B+} = 2B+ {K,B−} = −2B− {B−, B+} = 4K + 2M

{A+, B−} = −2A− {A+, B+} = 0 {M, ·} = 0
{A−, B+} = 2A+ {A−, B−} = 0.

(1.2)

A direct inspection of this algebra makes its rich subalgebra structure evident (for instance, the
gl(2) subalgebra {K,B+, B−,M}, the oscillator one h4 ≡ {K,A+, A−,M} and the Heisenberg
one h3 ≡ {A+, A−,M} can be easily identified). This is one of the main features of h6, since
this algebra generalizes many lower dimensional Lie symmetries in a transparent way, a fact
that will be relevant in order to find new and more general integrability structures.

As a consequence of (1.1), any quadratic Hamiltonian with one degree of freedom can
always be written as a linear combination of the h6 generators in the above representation. This
is indeed the origin of the quantum mechanical relevance of the h6 Lie algebra as a dynamical
symmetry, since the quantum counterpart of such a quadratic Hamiltonian can be interpreted
as a single-mode radiation field Hamiltonian including the number operator K̂ , creation and
annihilation operators Â+ and Â−, and two-photon creation and annihilation operators B̂+ and
B̂− (the generator M̂ is a central one) respectively. In this context, different applications of
the h6 symmetry can be found in [29], and it is also interesting to recall that h6 is isomorphic
to the (1 + 1)D centrally extended Schrödinger Lie algebra [31]. In fact, this isomorphism
provides two Casimir functions for h6, which are the central generator M and the fourth-order
Casimir [32]:

C = (
MB+ − A2

+

)(
MB− − A2

−
) − (MK − A−A+ + M2/2)2, (1.3)

that will play a relevant role hereafter. The function C can be reduced to a third-order invariant
by extracting M as a common factor:

Ch6 = C/M = MB+B− − B+A
2
− − B−A2

+ − M(K + M/2)2 + 2A−A+(K + M/2). (1.4)

Note that if we substitute the symplectic realization (1.1) within the two Casimir functions,
the former is characterized by the values M = λ2

1 and Ch6 = 0.
Now, if we endow the h6 Poisson algebra with a primitive coalgebra structure, i.e. with a

two-body coproduct (which is a Poisson algebra homomorphism � : h6 → h6 ⊗ h6 [24, 33])
given by

�(X) = X ⊗ 1 + 1 ⊗ X X ∈ {K,A+, A−, B+, B−,M}, (1.5)
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then the one-particle dynamical symmetry given by (1.1) can be generalized for any number
of degrees of freedom. As we shall see in section 2, this gives rise to an infinite
family of N-particle Hamiltonians defined as any smooth function H of the generators
of h6

H = H(K,B+, B−, A+, A−,M)

and provided that H is realized in the N-particle symplectic realization coming from the
coproduct structure. More importantly, the m-particle realizations (m = 3, . . . , N) of the
coproducts of the Casimir function Ch6 will provide a set of (N − 2) independent integrals of
the motion in involution with the whole family of Hamiltonians H (as we shall explain later,
the m = 2 realization gives a vanishing constant of the motion). Moreover, since there is only
one integral of motion left in order to get the complete integrability of H, we shall name all
these systems as quasi-integrable Hamiltonians. This construction will be described in detail
in section 2, and some preliminary results can be found in [33]. Moreover, having in mind
further applications, particular choices for H leading to ND natural systems, geodesic flows
and static electromagnetic Hamiltonians will be explicitly identified.

We stress that in the coalgebra symmetry framework, the dimension of the coalgebra and
the number of its nonlinear Casimirs are essential in order to analyse whether the coproduct
gives either complete or partial integrability under a chosen symplectic realization. This
dimensionality problem is essential for coalgebras with dimension greater than 3, and it has
been fully analysed in [27]. In fact, the h6 coalgebra provides the first explicit case of the
coalgebra construction for a six-dimensional coalgebra with two Casimir functions in which
one of them is a linear one (the generator M). Thus, the quasi-integrability is an essential feature
of the h6 coalgebra that could not appear in any of the examples of the coalgebra construction
considered so far (see, for instance, [23–27, 34–36]) because all such systems come from
three-dimensional coalgebras with one nonlinear Casimir, and their complete integrability is
then guaranteed by construction.

Therefore, as a consequence of the quasi-integrability of the h6-coalgebra symmetry, it
becomes important to develop some additional algebraic machinery in order to investigate for
which choices of the generic Hamiltonian H the complete integrability can be restored. This
is the aim of sections 3–5, in which we present a novel algebraic completion of the coalgebra
approach that provides a guide to obtaining the additional independent integral of motion I
by exploiting the rich subalgebra structure of h6. This approach is fully general and can be
applied to any coalgebra with dimension greater than 3.

In particular, in section 3, we analyse two different possibilities in order to find an extra
integral I. We remark that, in both cases, I will always be defined as a function of the
generators of h6, since this guarantees its existence for any number of degrees of freedom.
The first case arises if the chosen Hamiltonian can be defined on a subalgebra of h6, since
then the N-particle Casimir of such a subalgebra can be directly identified with the additional
constant of motion I. This possibility is discussed in section 4, where the rich subalgebra
structure for h6 is fully described. A second possibility is analysed in section 5, where we
introduce five new families of ND completely integrable systems that have one of the five non-
central generators of h6 as the remaining integral of motion I. This latter construction turns
out to be powerful, since all these systems depend on several arbitrary functions and provide
a large number of new instances of interesting Hamiltonians, from both the mathematical and
the physical viewpoints. Finally, some comments and further research lines are presented in
a concluding section.
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2. An infinite family of quasi-integrable systems

The integrability properties of the generic N-particle Hamiltonians with h6-coalgebra
symmetry rely on the following result.

Theorem 1. Let {q, p} = {(q1, . . . , qN), (p1, . . . , pN)} be N pairs of canonical variables.
The ND Hamiltonian

H = H(K,B+, B−, A+, A−,M), (2.1)

defined as any smooth function H : R
6 → R and

A+ =
N∑

i=1

λipi A− =
N∑

i=1

λiqi K =
N∑

i=1

(
qipi − λ2

i

2

)
(2.2)

B+ =
N∑

i=1

p2
i B− =

N∑
i=1

q2
i M =

N∑
i=1

λ2
i ,

where λi are N arbitrary parameters, is quasi-integrable. The (N−2) functionally independent
integrals of the motion for H are

C(m) =
m∑

1�i<j<k

(λi(pjqk − pkqj ) + λj (pkqi − piqk) + λk(piqj − pjqi))
2, (2.3)

where m = 3, . . . , N . These integrals are in involution and can be called ‘universal’ in the
sense that they do not depend on the specific choice of the function H.

Proof. The keystone to prove this result comes from the fact that (1.1) is a one-particle
symplectic realization for the Poisson coalgebra (h6,�), labelled by the λ1 parameter.
Moreover, it can be easily checked that (2.2) is just the N-particle symplectic realization
of (h6,�) that is obtained through the N-sites generalization of the coproduct (1.5):

�(N)(X) = X ⊗ 1 ⊗ 1 ⊗ · · ·N−1) ⊗ 1 + 1 ⊗ X ⊗ 1 ⊗ · · ·N−2) ⊗ 1 + · · ·
+ 1 ⊗ 1 ⊗ · · ·N−1) ⊗ 1 ⊗ X. (2.4)

This means that the N-particle generators (2.2) fulfil the commutation rules (1.2) with respect
to the canonical Poisson bracket {f, g} = ∑N

i=1

(
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

)
.

Moreover, such a coalgebra symmetry expressed through the symplectic realization
implies that each of the N-particle generators (2.2) Poisson commute with the (N−1) functions
C(m) given by the mth coproducts of the Casimir (1.4) with m = 2, 3, . . . , N (see [24, 33] for
details). However, in the case of the specific symplectic realization of h6 given by (2.2), the
C(2) function vanishes (the two-body coproduct of the Casimir is zero [33]) and we are left with
the set of (N − 2) integrals (2.3) that, also by construction, are functionally independent and
Poisson commuting. Therefore, any function H (2.1) of the N-particle symplectic realization
of the h6 generators will be in involution with the set of integrals C(m), which completes the
proof. �

This quite general result deserves the following remarks and comments.

• We can properly say that H is a quasi-integrable Hamiltonian, since for any dimension N
and any choice of H there is only one integral left in order to get its complete integrability.
Obviously, some specific choices for H will lead to completely integrable Hamiltonians
for which an additional integral does exist for any dimension N. The aim of this paper is
just to find solutions to this problem.
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• Within the coalgebra approach it is well known that, in general, two different sets of
integrals of the motion coming from ‘left’ and ‘right’ mth coproducts of the Casimir can
be obtained (see [26] for details). Indeed, this is also the case for the (h6,�) coalgebra,
where by making use of the ‘right’ mth coproducts, the following alternative set of (N −2)

integrals in involution C(m) is obtained:

C(m) =
N∑

N−m+1�i<j<k

(λi(pjqk − pkqj ) + λj (pkqi − piqk) + λk(piqj − pjqi))
2. (2.5)

This means that if we label the N sites on h6 ⊗h6 ⊗· · ·N) ⊗h6 by 1⊗2⊗ . . .⊗N , the ‘left’
Casimir C(m) is defined on the sites 1⊗2⊗. . .⊗m, while the ‘right’ one C(m) is defined on
(N −m+1)⊗ . . .⊗(N −1)⊗N . Moreover, it is straightforward to prove that the (2N −4)

functions {C(3), C(4), . . . , C(N) ≡ C(N), C(N−1), . . . C(3),H} are functionally independent
(assuming that H is not a function of C only) and the coalgebra symmetry ensures that
each of the two subsets {C(3), . . . , C(N),H} and {C(3), . . . , C(N),H} is formed by (N −1)

functions in involution [24, 26].
• As a consequence, in the case that an additional integral I is found for a given H, this

Hamiltonian will be not only integrable, but also superintegrable provided that the (N −3)

‘right’ constants C(m) (with m = 3, . . . , N − 1) commute with I (and this property will
be ensured if I is a function of the N-particle symplectic realization of the h6 coalgebra).

• The role of the λi parameters is essential in this approach, since they provide an
N-parameter freedom for the Hamiltonian. From a coalgebraic viewpoint, these λi

parameters can be neatly interpreted: each of them fixes the one-particle symplectic
realization that we use on the ith site of the underlying h6 symmetry lattice h6 ⊗ h6 ⊗
· · ·N) ⊗ h6.

• We stress that the integrals (2.3) can be interpreted as sums of the squares of a linear
combination (through the λi parameters) of ‘Euclidean angular momentum’ components
Jij . In particular, the N(N − 1)/2 functions Jij = qipj − qjpi with i < j and
i, j = 1, . . . , N span an so(N) Lie–Poisson algebra so that C(m) can be read as

C(m) =
m∑

1�i<j<k

(λiJjk + λjJki + λkJij )
2,

where Jki = −Jik . Hence, each term in C(m) is the square of an element of the Lie–
Poisson algebra so(3) = {Jij , Jik, Jjk} (and the same happens in C(m)). From this
perspective, the h6-coalgebra symmetry can be interpreted as a ‘generalization’ of the
spherical symmetry, which will be fully recovered when the Hamiltonian is defined on
the gl(2) Poisson subalgebra of h6.

• Although the central generator M is also a Casimir for the two-photon coalgebra, its Nth
coproduct gives rise to N trivial integrals of the motion:

M(m) =
m∑

i=1

λ2
i , m = 1, . . . , N, (2.6)

that do not provide any dynamical information. In this sense, M can be considered either
as a generator in its own right or as a constant that depends on both the dimension N and
the chosen symplectic realizations through the λi parameters.

Finally, is worth mentioning that the role of the h6 algebra in the integrability properties
of certain 3D Hamiltonian systems was already pointed out from a different viewpoint in [37].
Nevertheless, the introduction of a coalgebra structure in h6 turns out to be essential in order
to fully exploit its integrability information and to generalize it to arbitrary dimensions.

5
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2.1. Some relevant quasi-integrable Hamiltonians

Among the bunch of ND quasi-integrable systems that are provided by theorem 1, the following
particular subclasses are physically outstanding.

2.1.1. Natural systems. The Hamiltonian

H = 1
2B+ + F(A−, B−), (2.7)

where F is a function playing the role of a potential, gives rise to the following quasi-integrable
system on the ND Euclidean space E

N :

H =
N∑

i=1

p2
i

2
+ F

(
N∑

i=1

λiqi,

N∑
i=1

q2
i

)
. (2.8)

Note that central potentials (endowed with spherical symmetry) directly arise whenever F
does not depend on A−, since the Hamiltonian is then defined on the gl(2) subalgebra. Thus
in the case with generic F (A−, B−), the spherical symmetry is broken and its associated
(super)integrability is, in principle, reduced to quasi-integrability. Nevertheless, the h6-
coalgebra symmetry of (2.8) reduces the ND integrability problem to the search for only one
additional integral, whose existence and explicit form will depend on the particular choice of
the function F .

2.1.2. Electromagnetic Hamiltonians. The most general ND quasi-integrable Hamiltonian
including linear terms in the momenta is given by

H = 1
2B+ + KF(A−, B−) + A+G(A−, B−) + R(A−, B−), (2.9)

where F,G and R are smooth functions. In terms of canonical variables, it reads as

H =
N∑

i=1

p2
i

2
+

(
N∑

i=1

(
qipi − λ2

i

2

))
F

(
N∑

i=1

λiqi,

N∑
i=1

q2
i

)

+

(
N∑

i=1

λipi

)
G
(

N∑
i=1

λiqi,

N∑
i=1

q2
i

)
+ R

(
N∑

i=1

λiqi,

N∑
i=1

q2
i

)
. (2.10)

In 3D, this Hamiltonian describes the motion of a particle on E
3 under the action of a static

electromagnetic field which is determined by the functions F,G and R. Namely, if we
compare (2.10) with the 3D electromagnetic Hamiltonian

Hem = 1
2 (�p − e �A)2 + eψ (2.11)

where e is the electric charge, �A is the vector potential and ψ is the scalar one, we get

Ai = −qi

e
F (A−, B−) − λi

e
G (A−, B−) , i = 1, 2, 3 (2.12)

ψ = 1

e
R (A−, B−) − 1

2e
MF(A−, B−) − 1

2e
[B−F (A−, B−)2

+ 2A−F(A−, B−)G(A−, B−) + MG(A−, B−)2]. (2.13)

Note the relevant role that the λi parameters play in the definition of the electromagnetic field.
Also recall that ND superintegrable electromagnetic systems have been recently obtained
in [36] by making use of an sl(2, R)-coalgebra symmetry. In fact, as we shall show in
section 4, the latter systems are a particular subfamily of (2.10) since sl(2, R) is a sub-
coalgebra of h6. We also recall that only low-dimensional integrable Euclidean Hamiltonians
with velocity-dependent potentials have been previously studied in [38–42].

6
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2.1.3. Geodesic flow Hamiltonians. A third family of relevant systems is that given by ND
quasi-integrable Hamiltonians of the type

H =
N∑

i,j=1

gij (q1, . . . , qN)pipj (2.14)

that are obtained by considering

H = B+F(A−, B−) + A2
+G(A−, B−)

+

(
K +

M

2

)2

R(A−, B−) +

(
K +

M

2

)
A+S(A−, B−) (2.15)

since for any choice of the functions F,G,R and S, we obtain a Hamiltonian which is a
quadratic homogeneous function in the momenta. Explicitly,

H =
(

N∑
i=1

p2
i

)
F

(
N∑

i=1

λiqi,

N∑
i=1

q2
i

)
+

(
N∑

i=1

λipi

)2

G
(

N∑
i=1

λiqi,

N∑
i=1

q2
i

)

+

(
N∑

i=1

qipi

)2

R
(

N∑
i=1

λiqi,

N∑
i=1

q2
i

)

+

(
N∑

i=1

qipi

) (
N∑

i=1

λipi

)
S

(
N∑

i=1

λiqi,

N∑
i=1

q2
i

)
. (2.16)

We stress that the specific form of the metric gij is determined by the F,G,R and S functions
which, in general, give rise to an ND space of nonconstant curvature. In any case, the set
of constants of motion (2.3) is universal and does not depend on the specific choice of the
functions in the Hamiltonian. Moreover, additional potentials on these h6-coalgebra spaces can
be naturally considered by adding functions such as, e.g., U(A−, B−) to the free Hamiltonian
(2.15). In this way, the Euclidean natural systems (2.7) can be generalized to the curved
spaces defined through (2.15) without breaking the quasi-integrability of the geodesic flow
Hamiltonian.

In this respect, we recall that the complete integrability of a free Hamiltonian on a curved
space is a rather non-trivial property which is connected with geometric and topological
features of the underlying manifold [43–46]. From the physical viewpoint, the study of
integrable geodesic flows in arbitrary dimension is becoming increasingly popular in general
relativity, supergravity and superstring theories, where the explicit knowledge of the Stäckel–
Killing integrals of motion for the geodesic flows of ND curved spaces provides very useful
information (see, for instance, [47–50]). Since integrable examples of such ND curved
geodesic flows are quite scarce, the search for new completely integrable instances among the
Hamiltonians (2.16) is thus meaningful.

3. Complete integrability

At this point the main problem to be faced is the characterization of those Hamiltonians H for
which an additional integral I does exist for any dimension N, thus providing their complete
ND integrability.

In order to ensure the existence of I for any dimension N, we shall assume that this
additional integral is also h6-coalgebra invariant, which means that it can be written as a
function

I = I(K,B+, B−, A+, A−,M), (3.1)

7
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where the h6 generators are written in their N-particle symplectic realization (2.2). In this way,
if I is functionally independent with respect to both the h6 Casimir (1.4) and the Hamiltonian
H, the coalgebra symmetry ensures—by construction—the involutivity of I with respect
to the (N − 2) ‘left’ integrals C(m)(m = 3, . . . , N) and its functional independence with
respect to them. The very same result holds for the (N − 3) ‘right’ integrals C(m), where
m = 3, . . . , N − 1 (we recall that C(N) = C(N)).

This means that ifI does exist in form (3.1), thenHwill be not only a completely integrable
system but also a superintegrable one, since a total number of (N −2)+(N −3)+1 = (2N −4)

functionally independent constants of motion for H has been explicitly found. Nevertheless,
even in this superintegrable case, H is not a maximally superintegrable Hamiltonian, since
two more independent constants of the motion would be needed to get the maximum possible
total number of (2N − 2) independent integrals. Again, these two remaining integrals could
exist for some very particular choices for H, but in any case neither their existence nor their
explicit form can be derived from the h6-coalgebra symmetry.

The rest of the paper is devoted to showing how the search for the additional I (3.1) can be
guided by taking into account the subalgebra structure of h6. In particular, we shall consider
two different situations in which the existence of I is guaranteed by construction.

(A) If the Hamiltonian H is defined within a subalgebra of h6 that has a nonlinear Casimir
invariant, the N-particle realization of the Casimir of the subalgebra provides the integral I.
This subalgebra integrability approach will be analysed in the following section, in which the
subalgebra structure for h6 will be fully described.

(B) Let X be a fixed generator of h6. The N-particle symplectic realization of X will Poisson
commute with any N-particle Hamiltonian HX defined as a function of all the remaining h6

generators commuting with X and of the Casimirs of all the subalgebras containing the given
generator X. Under such hypotheses, HX is completely integrable since the generator X is just
the additional constant of motion I. We have five relevant generators {K,B+, B−, A+, A−}
(the central generator M would give no dynamical information), so this generator integrability
procedure will give rise to five families of completely integrable systems that will be studied
in detail in section 5.

Finally, we stress that if a given Hamiltonian does not fit within the two previous
approaches, the search for the remaining integral I—in case it does exist—has to be performed
by using direct methods. Indeed, some particular solutions can be found, and a particular
example will be given in the concluding section.

4. Subalgebra integrability

The subalgebras of h6 with a non-trivial (i.e. linear) Casimir function are summarized in
table 1 together with their 1D symplectic realization. They are as follows.

(i) Two ‘book’ algebras D+ and D− generated by a dilation plus two translations.

(ii) The harmonic oscillator algebra h4.

(iii) Two centrally extended (1 + 1)D Galilean algebras G+ and G−.

(iv) A centrally extended 2D Euclidean algebra E (where μ and ν are non-zero real parameters).

(v) The gl(2) algebra.

More details on these subalgebras and on their associated Lie–Poisson structures can be
found in [30]. Clearly the Heisenberg–Weyl algebra h3 = {A+, A−,M} is a subalgebra of

8
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Table 1. Relevant subalgebras of h6.

Subalgebra Generators Symplectic realization Casimir function

D+ K,A+, B+ qp − λ2

2 , λp, p2 A2
+/B+

D− K,A−, B− qp − λ2

2 , λq, q2 A2
−/B−

h4 K,A−, A+, M qp − λ2

2 , λq, λp, λ2 M
(
K + 1

2 M
) − A−A+

G+ B+, A−, A+, M p2, λq, λp, λ2 MB+ − A2
+

G− B−, A−, A+, M q2, λq, λp, λ2 MB− − A2
−

E μB+ + νB−, μp2 + νq2, M(μB+ + νB−)

A−, A+, M λq, λp, λ2 −μA2
+ − νA2

−
gl(2) K,B−, B+, M qp − λ2

2 , q2, p2, λ2 B−B+ − (
K + 1

2 M
)2

h4, and gl(2) contains an sl(2, R) subalgebra (by mapping K → K + M/2), so we have the
following subalgebra embeddings:

h3 ⊂ h4 ⊂ h6 G± ⊂ h6 sl(2, R) ⊂ gl(2) ⊂ h6. (4.1)

Also note that E is a proper Euclidean subalgebra whenever μ and ν have the same sign; in
contrast, E is in fact a centrally extended (1 + 1)D Poincaré subalgebra. In the following,
we do not distinguish the two real forms as the resulting expressions for E will be globally
parametrized through μ and ν.

As we have pointed out in the previous section, any Hamiltonian Hg defined on one of
the above-mentioned subalgebras g is completely integrable by construction, since the Nth
coproduct of the Casimir Cg provides the extra integral I, which completes the set of (N − 2)

left integrals C(m) coming from the h6 coalgebra. Note that I is a function of the h6 generators
and, as a consequence, is in involution with each of the C(m) integrals. Therefore, we can state
that the following ND Hamiltonians define completely integrable systems:

HD+ = HD+(K,A+, B+)

HD− = HD−(K,A−, B−)

Hh4 = Hh4(K,A−, A+,M)

HG+
= HG+

(B+, A−, A+,M) (4.2)

HG− = HG−(B−, A−, A+,M)

HE = HE(μB+ + νB−, A−, A+,M)

Hgl(2) = Hgl(2)(K,B−, B+,M),

where the h6 generators are taken through their ND symplectic realization (2.2) and the
Hamiltonian functions are any smooth functions of the corresponding arguments. Moreover,
all these systems are superintegrable, since the h6 coalgebra provides (N − 3) additional and
functionally independent integrals of the motion given by the ‘right’ integrals C(m).

The explicit form of the Casimir invariant Cg ≡ I of each subalgebra g is given in
table 2 in terms of the N-particle symplectic realization (2.2). It is interesting to remark that
the two-photon Casimir (1.4) can be expressed in terms of the Casimirs of the four subalgebras
h3, h4,G+,G− as

Ch6 = 1

Ch3

(
CG+

CG− − C2
h4

)
. (4.3)

Let us finally comment that all of these subalgebras are also sub-coalgebras since the
same primitive coproduct (1.5) holds for all of them as Lie–Poisson algebras. In fact, an
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Table 2. ND symplectic realization of the Casimir of each of the sub-coalgebras of (h6,�) given
in table 1.

Sub-coalgebra Integrals of motion

(D+, �) C
(N)
D+

=
(

N∑
i=1

λipi

)2/(
N∑

j=1

p2
j

)

(D−, �) C
(N)
D− =

(
N∑

i=1

λiqi

)2/(
N∑

j=1

q2
j

)

(h4, �) C
(N)

h4
=

N∑
1�i<j

(λjpi − λipj )(λjqi − λiqj )

(G+, �) C
(N)

G+
=

N∑
1�i<j

(λjpi − λipj )
2

(G−, �) C
(N)

G−
=

N∑
1�i<j

(λjqi − λiqj )
2

(E, �) C
(N)

E =
N∑

1�i<j

{μ(λjpi − λipj )
2 + ν(λjqi − λiqj )

2}

(gl(2),�) C
(N)

gl(2) =
N∑

1�i<j

(qjpi − qipj )
2

alternative approach to the integrability of the systems (4.2) would be to consider directly the
coalgebra construction for the subalgebra in which Hg is defined, thus forgetting about the
whole h6 scheme. In that case, the integrals of motion would be given by the ‘left’ and ‘right’
mth coproducts of the Casimir of the subalgebra Cg , say C(m)

g and Cg,(m) (m = 2, . . . , N),
respectively.

In this way, by taking into account that C(2)
g and Cg,(2) do not vanish in the subalgebra,

we would obtain (in principle) a maximum number of (2N − 3) independent constants of
motion for Hg , and each set of N functions

{
C(m)

g ,Hg

}
or {Cg,(m),Hg} would be in involution.

However, in the case of D+,D− and the two centrally extended (1 + 1)D Galilean algebras G+

and G−, the right integrals Cg,(m) turn out to be functionally dependent with respect to the left
ones, and in these cases the superintegrability of the associated systems can only be derived
by making use of the h6-coalgebra construction.

Some of these subalgebras have been considered previously from the coalgebra method,
so that we refer to the various papers on the subject [27, 34, 36]. Nevertheless, it is worth
pointing out that in the present h6 framework the integrals of motion coming from gl(2)

just provide those coming from the spherical symmetry (see table 2). In terms of the so(N)

generators Jij (see section 2), these read as

C
(m)

gl(2) =
m∑

1�i<j

J 2
ij C(m),gl(2) =

m∑
N−m+1�i<j

J 2
ij .

Therefore when a Hamiltonian of the type Hgl(2) is considered, the spherical symmetry and
its associated superintegrability are recovered as a particular case of the more general h6-
coalgebra setting.

10
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5. Generator integrability

Now, let us choose a given generator X of h6. If we look for all the generators Xj (j = 1, . . . , l)
commuting with X and we look for all the subalgebras gk (k = 1, . . . , t) containing X as a
generator, it becomes obvious that the Hamiltonian constructed through any function of the
type

HX = HX(Cg1 , . . . , Cgt
, X,X1, . . . , Xl), (5.1)

where Cgk
is the Casimir function of the subalgebra gk , verifies that

{HX,X} = 0. (5.2)

Moreover, the Nth particle symplectic realization of both X and HX will Poisson commute with
the two sets of integrals C(m) (2.3) and C(m) (2.5) respectively. Therefore, the Nth symplectic
realization of HX is a completely integrable ND Hamiltonian system (in fact, superintegrable
with a total number of (2N − 4) integrals of the motion).

As we shall see in the following, by taking into account the information concerning the
h6 subalgebras that is contained in tables 1 and 2, this result provides in a straightforward way
a bunch of new ND integrable systems. We stress that particular integrable systems belonging
to the three classes of the generically quasi-integrable Hamiltonians (2.8), (2.10) and (2.16)
can be straightforwardly identified.

5.1. Hamiltonians in involution with K

Let us start by considering X ≡ K . It can immediately be checked that the only generator
that Poisson commutes with K is M, the central one. On the other hand, K is contained
in the subalgebras D+,D−, h4 and gl(2). Therefore, the most general Hamiltonian with the
h6-coalgebra symmetry and in involution with K is

HK = HK(CD+, CD− , Ch4 , Cgl(2), K,M), (5.3)

where the smooth function HK : R
6 → R. Now, if we take the ND symplectic realizations of

HK , we obtain an ND integrable Hamiltonian with (N − 1) integrals of motion in involution
given by (2.3) together with

I ≡ K =
N∑

i=1

qipi. (5.4)

Next, in order to classify the type of Hamiltonian systems that can be constructed from
HK , we have to realize that the symplectic realizations of K and Ch4 are linear in the momenta,
while Cgl(2) is quadratic in p. On the other hand, CD+ is rational in p (for arbitrary λi) and
CD− is a rational function in the canonical coordinates q. With these ingredients in mind
and by considering the three families of systems given in section 2.1, a family of completely
integrable geodesic flows on ND curved spaces is obtained through a choice of the Hamiltonian
HK leading to a quadratic homogeneous function in the momenta. Namely, the most general
possibility of this type turns out to be

HK = Cgl(2)F(CD−) +

(
K +

M

2

)2

G(CD−) + C2
h4
R(CD−) +

(
K +

M

2

)
Ch4S(CD−), (5.5)

where F,G,R and S are smooth functions. When this Hamiltonian is written in terms of
canonical coordinates, we get

11
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HK =
⎛
⎝ N∑

1�i<j

(qjpi − qipj )
2

⎞
⎠F

((∑N
i=1 λiqi

)2∑N
i=1 q2

i

)
+

(
N∑

i=1

qipi

)2

G
(( ∑N

i=1 λiqi

)2∑N
i=1 q2

i

)

+

⎛
⎝ N∑

1�i<j

(λjpi − λipj )(λjqi − λiqj )

⎞
⎠

2

R
(( ∑N

i=1 λiqi

)2∑N
i=1 q2

i

)

+

⎛
⎝ N∑

1�i<j

(λjpi − λipj )(λjqi − λiqj )

⎞
⎠ (

N∑
i=1

qipi

)
S

(( ∑N
i=1 λiqi

)2∑N
i=1 q2

i

)
, (5.6)

which is an ND integrable geodesic flow that depends on four smooth functions and N free
parameters λi .

5.2. Hamiltonians in involution with A+

When the generator A+ is considered, we find that both B+ and M commute with it. On
the other hand, A+ belongs to the subalgebras D+, h4,G+,G− and E . Both facts lead to the
completely integrable Hamiltonian

HA+ = HA+(CD+ , Ch4 , CG+
, CG− , CE , A+, B+,M) (5.7)

whatever the function HA+ . In this case, the appearance of B+ (the Euclidean kinetic energy
term) allows for a wider set of possibilities. In particular, all the following types of integrable
Hamiltonians can be considered as specific cases of HA+ for which the remaining integral
is I ≡ A+ = ∑N

i=1 λipi . This integral can be interpreted as a λi-generalization of the
translational symmetry.

• Natural Hamiltonians. The only possibility is

HA+ = 1

2
B+ + F(CG−) =

N∑
i=1

p2
i

2
+ F

⎛
⎝ N∑

1�i<j

(λjqi − λiqj )
2

⎞
⎠ . (5.8)

Note that this Hamiltonian is not defined within the G− subalgebra. In the N = 2 case,
the Calogero–Moser systems [8, 9] arise as particular choices for F .

• Electromagnetic Hamiltonians. We can add linear terms in the momenta to the previous
Hamiltonian leading to

HA+ = 1

2
B+ + Ch4G(CG−) + A+R(CG−) + F(CG−)

=
N∑

i=1

p2
i

2
+

⎛
⎝ N∑

1�i<j

(λjpi − λipj )(λjqi − λiqj )

⎞
⎠G

⎛
⎝ N∑

1�i<j

(λjqi − λiqj )
2

⎞
⎠

+

(
N∑

i=1

λipi

)
R

⎛
⎝ N∑

1�i<j

(λjqi − λiqj )
2

⎞
⎠ + F

⎛
⎝ N∑

1�i<j

(λjqi − λiqj )
2

⎞
⎠ . (5.9)

• Geodesic flows. The most general expression coming from HA+ and with homogeneous
quadratic dependence in the momenta is given by
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HA+ = C2
h4
F(CG−) + CG+

G(CG−) + B+R(CG−) + A2
+S(CG−) + A+Ch4T (CG−)

=
⎛
⎝ N∑

1�i<j

(λjpi − λipj )(λjqi − λiqj )

⎞
⎠

2

F

⎛
⎝ N∑

1�i<j

(λjqi − λiqj )
2

⎞
⎠

+

⎛
⎝ N∑

1�i<j

(λjpi − λipj )
2

⎞
⎠G

⎛
⎝ N∑

1�i<j

(λjqi − λiqj )
2

⎞
⎠

+

(
N∑

i=1

p2
i

)
R

⎛
⎝ N∑

1�i<j

(λjqi − λiqj )
2

⎞
⎠+

(
N∑

i=1

λipi

)2

S

⎛
⎝ N∑

1�i<j

(λjqi − λiqj )
2

⎞
⎠

+

(
N∑

i=1

λipi

)⎛
⎝ N∑

1�i<j

(λjpi − λipj )(λjqi − λiqj )

⎞
⎠ T

⎛
⎝ N∑

1�i<j

(λjqi − λiqj )
2

⎞
⎠ .

(5.10)

5.3. Hamiltonians in involution with either A−, B− or B+

To end with we jointly present these three types of Hamiltonians, since all of them provide
new examples of ND geodesic flows.

• A−-Hamiltonians. If we consider that I ≡ A− = ∑N
i=1 λiqi , it is straightforward to

prove that the most general integrable A−-Hamiltonian reads as

HA− = HA−(CD− , Ch4 , CG+
, CG− , CE , A−, B−,M). (5.11)

In this case, geodesic flow Hamiltonians are available through the particular choice

HA− = C2
h4
F(CD−, CG− , A−, B−) + CG+

G(CD− , CG− , A−, B−) (5.12)

and its N-particle symplectic realization can be immediately obtained.
• B−-Hamiltonians. A similar situation is encountered when I ≡ B− = ∑N

i=1 q2
i is

considered. In this case, we have that

HB− = HB−(CD−, CG− , Cgl(2), B−, A−,M) (5.13)

and since Cgl(2) is the only term quadratic in the momenta, we are led to the integrable
geodesic flow given by

HB− = Cgl(2)F(CD−, CG− , B−, A−). (5.14)

• B+-Hamiltonians. Finally, the last possibility is given by I ≡ B+ = ∑N
i=1 p2

i . Now, the
most general integrable Hamiltonian is given by

HB+ = HB+(CD+, CG+
, Cgl(2), B+, A+,M). (5.15)

All the variables for HB+ (except M) depend on the momenta. Therefore, in this case the
only integrable geodesic flow can be obtained through

HB+ = αB+ + βA2
+ + γ Cgl(2) + δCG+

, (5.16)

where α, β, γ and δ are constants.
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6. Concluding remarks

As we mentioned in section 3, a third possibility of showing the complete integrability for a
given Hamiltonian H (2.1) with h6-coalgebra symmetry is the direct search for an additional
integral I, which can be assumed to be an unknown function of the h6 generators. An example
for this type of construction is given by the following geodesic flow system:

H = B+(α1A− + α2B− + α3), (6.1)

where α1, α2, α3 are non-vanishing constants. Despite its simplicity, this quadratic h6

Hamiltonian neither lives in any h6 subalgebra nor can be included within the cases studied
in the previous section. However, the following additional (and functionally independent)
constant of motion can be found by direct computation

I = 4α1α2A+

(
K +

M

2

)
+ 4α2α3B+ + 4α2

2K(K + M) − α2
1CG+

. (6.2)

This integral provides the complete integrability of the system (6.1) for any dimension. Note
that in the limit α2 → 0 the Hamiltonian (6.1) belongs to the subalgebra G+, and in that
case I is just the Casimir function for such a subalgebra, as it should be. We stress that this
direct search for the remaining integral can be indeed very useful, since it can be quite easily
computerized. In fact, the integral I can be searched among h6 functions with cubic or higher
dependence on the momenta (note that all the integrals that we have presented throughout the
paper are, at most, quadratic in the momenta).

Moreover, nothing prevents that, although for a certain H defined on h6 the additional
integral does exist, such I cannot be written as a function (3.1) of the h6 generators (i.e. I
would not be coalgebra invariant). This implies that in this case all the previous methods
are not applicable and the explicit form for I has to be found for each dimension N, which
constitutes a much more cumbersome task. Nevertheless, we would like to emphasize that
any h6-coalgebra-invariant Hamiltonian H of form (2.1) is only one integral away from being
completely integrable, and the search for the complete list of integrable choices for H certainly
deserves further work.

On the other hand, as was pointed out from the very beginning of the coalgebra approach
to integrability, the existence of the coalgebra symmetry of H allows for the direct construction
of integrable deformations of H through the use of q-deformations of the underlying Poisson
coalgebra [24]. In the case of h6, quantum two-photon/Schrödinger algebras have been
constructed [31, 51] and its Poisson versions could be used to provide integrable deformations
[52] of some of the systems presented here. But here it is important to recall that quantum
deformations do not preserve—in general—all the sub-coalgebra structures that exist in the
undeformed coalgebra (see [53]). So once a given q-deformation of h6 had been constructed,
the full analysis given in this paper has to be repeated step by step in order to elucidate which
integrability properties have survived under q-deformation.

Finally, we mention that some of the new families of integrable ND Hamiltonians that we
have presented in this paper deserve an individual analysis of their dynamical, geometric and
physical features, which we also plan to develop in the near future.
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